Data collection: MARxds (Kabsch, 1988). Cell refinement: MARxds. Data reduction: CRYSTALS (Watkin et al., 1985). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: CRYSTALS. Molecular graphics: CRYSTAN (Burzlaff \& Rothammel, 1988). Software used to prepare material for publication: CRYSTALS and local software.

The work has been funded by the German Federal Minister of Education, Science, Research and Technology under contract No. 331-4005-05 647VKA. Financial support from the 'Fonds der Chemischen Industrie' is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1153). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435. Burzlaff, H. \& Rothammel, W. (1988). ATARI CRYSTAN88. In Proceedings of the 3 rd Workshop on Computers in Chemistry, edited by G. Gauglitz. Berlin: Springer.
Hümmer, K. \& Weckert, E. (1995). Acta Cryst. A51, 431-438.
Kabsch, W. (1988). J. Appl. Cryst. 21, 916-924.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, p. 281. Copenhagen: Munksgaard.
Volk, F.-J. \& Frahm, A. W. (1996). Liebigs Ann. Chem. pp. 18931903.

Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.
Weckert, E. \& Hümmer, K. (1997). Acta Cryst. A53, 108-143.

Acta Cryst. (1998). C54, 389-390

A Cyclic Sulfate with a Seven-Membered Ring: 1,3,2-Dioxathiepane 2,2-Dioxide

Carl Krüger, Magnus Kessler, Christian Six and Walter Leitner

Max-Planck-Institut für Kohlenforschung, Kaiser-WilhelmPlatz 1, D-45470 Mülheim an der Ruhr, Germany. E-mail: krueger@mpi-muelheim.mpg.de
(Received I3 June 1997; accepted II November 1997)

Abstract

We report the first structure of a seven-membered cyclic organosulfate, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}$. The molecule has almost a local C_{2} symmetry (r.m.s. deviation within molecule 1 is $0.018 \AA$). The two molecules in the asymmetric unit show the same conformation [r.m.s. deviation of all non-

H atoms is 0.017 (7) \AA]. Although the seven-membered ring is flexible in solution, the conformations of the two independent molecules are apparently not influenced by crystal-packing effects.

Comment

Epoxides play a unique role in organic synthesis. They simultaneously activate and protect adjacent functionalized C atoms for nucleophilic attack (Gao \& Sharpless, 1988). The same favorable properties are shared by cyclic sulfates, which have recently found useful applications as ring-closing reagents for the synthesis of saturated phosphorous-containing heterocycles (Field \& Thomas, 1996) and as substrates for selective substitution reactions involving fluoride or phenoxide ions as nucleophiles (Berridge et al., 1990). The title compound, (I), was prepared in a two-step synthesis according to the method described by Sharpless (Gao \& Sharpless, 1988).

(I)

Compound (I) crystallizes in space group $P \overline{1}$ with two molecules in the asymmetric unit. Both molecules have a local C_{2} symmetry (r.m.s. deviation within molecule 1 is $0.018 \AA$), which does not coincide with any crystallographic symmetry element. The $\mathrm{S}-\mathrm{O}$ and $\mathrm{O}-\mathrm{C}$ bond lengths are as expected from other cyclic sulfates. In both independent molecules, the $\alpha-\mathrm{C}$ C (e.g. $\mathrm{C} 1-\mathrm{C} 2$) bond lengths (average $1.488 \AA$) are shorter than the $\beta-\mathrm{C}-\mathrm{C}(e . g . \mathrm{C} 2-\mathrm{C} 3)$ bond lengths (average $1.504 \AA$), but agree within both molecules in spite of their different environments [r.m.s. deviation of all non- H atoms is 0.017 (7) \AA]. The relatively short $\mathrm{C}_{s p^{3}}-\mathrm{C}_{s p^{3}}$ bonds lengths and the correspondingly large

Fig. 1. View of the two molecules in the asymmetric unit of (I) showing the labeling of the non-H atoms. Atomic displacement ellipsoids are shown at the 50% probability level.
$\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles (average 115.4°) may be due to slight disorder. The means of the $\mathrm{S}-\mathrm{O}$ bonds for the neutral tetrahedra (1.477 and $1.470 \AA$) substantiate Kálmán's early findings on tetrahedral oxy anions (Kálmán, 1971). The O3-S1-O4 (O7-Si-O8 in molecule 2) bond angle [103.45 (10) and $103.92(10)^{\circ}$, respectively] is in the upper range of corresponding O -$\mathrm{S}-\mathrm{O}$ angles in cyclic sulfates. Interestingly, this angle becomes much smaller in an eight-membered ring such as benzophenone- $2,2^{\prime}$-sulfate (99.59°; Litvinov et al., 1982).

Fig. 2. Stereoview of the unit cell.

Experimental

The title compound, (I), was prepared in a two-step synthesis according to the method described by Sharpless (Gao \& Sharpless, 1988). Crystals were isolated from the reaction mixture.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=152.16$
Triclinic
$P \overline{1}$
$a=6.4376$ (8) \AA
$b=9.7440(9) \AA$
$c=10.8177(10) \AA$
$\alpha=92.328(8)^{\circ}$
$\beta=96.772(11)^{\circ}$
$\gamma=99.011(11)^{\circ}$
$V=664.31$ (12) \AA^{3}
$Z=4$
$D_{x}=1.521 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.094$
\quad diffractometer	$\theta_{\max }=26.29^{\circ}$
$\omega-2 \theta$ scans	$h=-8 \rightarrow 0$
Absorption correction: none	$k=-11 \rightarrow 12$
2940 measured reflections	$l=-13 \rightarrow 13$
2690 independent reflections	3 standard reflections
1823 reflections with	frequency: 30 min
$\quad I>2 \sigma(I)$	intensity decay: 9.1%

Refinement

Refinement on F^{2}
$R(F)=0.042$
$w R\left(F^{2}\right)=0.096$
$S=1.047$
2690 reflections
227 parameters
All H atoms refined
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.231 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.378 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C) $+0.1871 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cl}-\mathrm{O} 3$	1.471 (3)	C5-08	1.486 (4)
$\mathrm{Cl}-\mathrm{C} 2$	1.485 (4)	C5-C6	1.474 (5)
C2-C3	1.500 (5)	C6-C7	1.508 (6)
C3-C4	1.488 (4)	C7-C8	1.492 (4)
C4-04	1.478 (3)	C8-07	1.471 (4)
O1-S1	1.412 (2)	O5-S2	1.401 (2)
O2-S1	1.404 (2)	O6-S2	1.411 (2)
O3-S1	1.546 (2)	O7-S2	1.532 (2)
$04-\mathrm{Sl}$	1.545 (2)	O8-S2	1.535 (2)
$\mathrm{O} 3-\mathrm{Cl}-\mathrm{C} 2$	109.6 (3)	C6-C5-08	108.6 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	116.0 (3)	C5-C6-C7	115.2 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	115.5 (3)	C8-C7-C6	114.9 (3)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	108.5 (2)	O7-C8--C7	109.3 (3)
$\mathrm{Cl}-\mathrm{O}-\mathrm{Sl}$	118.4 (2)	$\mathrm{C} 8-\mathrm{O} 7-\mathrm{S} 2$	119.5 (2)
C4-04-S1	119.2 (2)	C5-08-S2	117.8 (2)
$\mathrm{O} 2-\mathrm{Sl}-\mathrm{O} 1$	118.79 (14)	O5-S2-06	118.7 (2)
O2-S1-04	112.14 (14)	O5-S2-07	106.3 (2)
$\mathrm{O} 1-\mathrm{S1}-\mathrm{O} 4$	104.14 (12)	O6-S2-07	111.46 (14)
$\mathrm{O} 2-\mathrm{Si}-\mathrm{O} 3$	105.67 (13)	O5-S2-08	110.7 (2)
$\mathrm{Ol}-\mathrm{S1}-\mathrm{O} 3$	111.71 (13)	O6-S2-O8	104.9 (2)
$\mathrm{O} 4-\mathrm{Sl}-\mathrm{O} 3$	103.45 (10)	O7-S2-08	103.92 (10)

The title structure was solved by direct methods (SHELXS86; Sheldrick, 1990) and refined by full-matrix least squares, where the quantity minimized was $\left[\Sigma \omega\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right]$ (SHELXL93; Sheldrick, 1993). Non-H atoms were refined anisotropically and H atoms were included in the refinement using a riding model.

Data collection: CAD-4 Express Software (Enraf-Nonius, 1995). Data reduction: DATAP (Coppens et al., 1965). Molecular graphics: ORTEPII (Johnson, 1976).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1250). Services for accessing these data are described at the back of the journal.

References

Berridge, M. S., Fraceschini, M. P., Rosenfeld, E. \& Tewson, T. J. (1990). J. Org. Chem. 110, 1211-1217.

Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 4656-4663.
Enraf-Nonius (1995). CAD-4 Express Software. Version 5.1. EnrafNonius, Delft, The Netherlands.
Field, L. D. \& Thomas, I. P. (1996). Inorg. Chem. 35, 2546-2548.
Gao, Y. \& Sharpless, K. B. (1988). J. Am. Chem. Soc. 110, 75387539.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kálmán, A. (1971). J. Chem. Soc, A, pp. 1857-1859.
Litvinov, I. A., Struchkov, Yu. T., Anonimova, I. V. \& Arbuzov, B. A. (1982). Dokl. Akad. Nauk SSSR, 262, 615-618.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

